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Abstract. It is proved that every solution of the stationary Toda equation in the generic case
is represented as a discrete orbit of the symplectic map obtained through nonlincarization of
the Toda eigenvalue problem. As an application, the caleulation of the finite-band sclution of
the Toda lattice equation is reduced to the solution of a system of ODEs plus a simple iterative
process of the symplectic map.

1. Introduction

Although the integrability of differential equations of motion was the ultimate goal in the
early years of classical mechanics, there were then only a very few examples of integrable
systems; including the famous Jacobi’s geodesics on an ellipsoid, Neumann’s constrained
harmonie oscillator and the integrable cases of top due to Euler, Lagrange and Kovalevskaya.
In recent years, quite a few new finite-dimensional integrable systems have been discovered
through various reduction techniques from soliton hierarchies (see [1-5]). Nevertheless, it
‘was only in 1991 that the framework of the discrete version of classical integrable systems
was found, which is expressed in the language of integrable symplectic maps (see [6, 71).

The nonlinearization technique [1-3], or the restricted flow technique [4, 5], which is
similar, is proved to be a powerful tool for obtaining new finite-dimensional integrable
systems from various soliton hierarchies. The aim of the present paper is to show that the
technique is also effective, in the discrete case, of finding new integrable symplectic maps
[6,7). The Toda lattice hierarchy is studied in detail to illustrate the general principles.
The symplectic maps in the Bargmann—Garnier and Neumann cases, with their conserved
integrals, are obtained in [8,9]. Here a new understanding is given. It is shown that in the
general case each solution of the stationary Toda equation is represented as a discrete orbit
of the integrable symplectic map, which is obtained through nonlinearization of the Toda
eigenvalue problem. To prove this difficult existence theorem, just as in the continuous
case of the Heisenberg hierarchy [10], the following tools are essential and have general
significance:

(i) the total difference formulae, which yield the explicit recursive formulae for the Toda
gradients {7} and the conserved integrals of the symplectic map in a systematic way (see
lemma 1.1);
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(ii} the commutative formula, which gives the commutative representation of the Toda
vector fields (see lemma 3.1); and

(iii) the interpolation formula, which establishes the inner relationship of the Lenard
equation and the Lenard eigenvalue problem; the former defines the soliton equations,
while the latter determines the nonlinearized eigenvalue problems (see (4.19)).

Direct relations between the integrals {F;} of the symplectic map, the Toda vector fields
{X9} and the time parts {V®} of the Lax pair are revealed in section 6.

As an application, the calculation of the finite-band solution of the Toda equation is
decomposed into two steps: the solution of a Hamiltonian system of ObEs plus an iterative
process of the symplectic map. A numerical example shows the discrete evolution picture
of the solutions.

A P Fordy asked for an explanation of the integrability mechanism of the nonlinearized
eigenvalue problem (MEP). It turns out that there exists some kind of equivalence between
the integrability of the stationary soliton equations and the NEP. A rigorous treatment is
made in this respect for the Heisenberg case as a continuous model [10], while the present
paper provides a discrete example.

2. The Toda vector fields

Let E be the shift operator: Ef(n) = f(n+ 1), E7'f(n) = f(n— 1) and A = E — I,
A~ =1— E~!, Consider the Toda eigenvalue problem:

LY =au Voot + ba¥n+ Ga¥uri =20 o Ly =(E'a+b+aE)y =iy

2.n

It is well known that

e (3f) - ()

(K —ANVA=0 (23)
where K, J are the Lenard pair of operators:

K= (%a(A +A™)a alAb )

bA~a 2@ A+ A ad?)

7= ( RS T @4)
Consider the Lenard recursive equations:

JECN —g KEU-D = Jg0, 2.5)

The former has two linearly independent solutions:

-2 _ {a;’ ~n_{0
£-(F) w=()
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while the iatter has special polynomial solutions:
@ _ { 20x g = 2an(by + bnt1)
" by " a’_, +ak + b}

g(2) — 2a, (a:..l -+ a,% + ar%+l + bg + bﬂ:bn+I + bnga.])
" G2y (ot + 2ba) + G2(2by + byg) + b

(2.6h)
etc.

g4~ has a special position, since Xg¢® = Jg? = 0, and plays a special role in the
whole structure. The first few Toda vector fields X} = Jg@ are

-1 © _ { @1 — bs)
X, 0 X, ( 2a?—a?_)

2 2 2 2 @n
X(l) = a’"(an-i-l —dy + brz - bn-—1) .
" Za,f(b,,.,.l + bn) - 2934("% + bn—-l)
The general solution of (2.5) is expressed as the linear combination
£ = cogV + 18V - 4 gV + 84282 2.8

Lemma 1.1 (Total difference formula). For any functions «, 8 of discrete variables n € Z
{1

() 2(3)=2{(3) 7 5)

= Afday 1850100 + by — A)poi @it Br + 282 Br1Ba) 2.9)

o emamn(f)=afs(5)]
i g2k =) (§ : o0

= A{%(anwn + Gn-10tn-1} + (by — A)Br}
where T =T — ATy, § = 81 — ASp with

17—l
Iy = (Zba.f-laa 2E91a2) To= (Eg'a 8) @11
5, (;) = L1+ Eaa + 8 so(g) = 2.12)

Proof. By direct calculations, resorting to the discrete Leibnitz rule, fAg + gA™f =
AGET ). O
(i}

Proposition 1.2.  The polynomial solution g,(f) = (& gg,{)r satisfies the explicit recursive
formula
-1 -1 -1 Nk
gin = brnigl " + 20l + 850 )= Y giheim
JHk=s-1

+ E {gffﬂ(%anﬂg?.‘iﬂ+bn+13§fi+1)+2an glllggft)l*{-]} s=2,34,..
JAk=5=-2
(2.13)

g8 = Langl,V +ar gl ) + gl s=0,1,2,....
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Proof. Put {g'”?} on the carrier of the Laurent series

=1
— =1} N £}
g=8"+2 wa
=0

which satisfies (K — AJ)g = 0. Hence, we have two quantities independent of n € Z

g - Tg =constant =0 Sg = constant = =X

and the required (2.13) is obtained by comparing the coefficients of the same power of A.

|
Remark 1.3, As by-products, we have

SogV =1 518U = 5,V i=012,....

3. The commutative representation

By introducing p, = @y.i¥a-i»> Gn = ¥, (2.1) is transformed into

(Pu+l) - Uﬂ (pﬂ)
T+l qn
0 a,
Gy

an an

with

The discrete zero-curvature equation
Up = Vn+lUn - U,V
is defined as the compatibility condition of the Lax pair

Yar1 = Undn Yar = VaYn.

Let u = (g, b)T and

d
V()] = —

£=0 al al a

A direct calculation gives the following lemma.

1 10 b ld l
Uu+eu) = LI a-L1i )

(2.14)

3.1

(3.2)

(3.3)

(34)
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Lemma 3.1 (Commutative formula). For arbitrary function G, = (., B.)7, of discrete
variables n € Z,

Vet Un — UpVy = U, (g; ) (K — A0)Gy] (3.5)

where the zero trace V is defined as

1 (antty — Gue1®a)) + (s — MBu 202 Bacy ) . (3.6)
*

Ve =0(Gp) = ( ~28,

Consider a special choice of G:
N - -
G{N)(}-. g) = ZEO_IJLN-J' (3.7)
7=0
We have

N-1
(K —aNGM = REW-D 4 N (REU=D — JeD)aN=i — (Jpt-Dyan+
j=0

= JEW = XM 4o, XV o4 oy x@
Theorem 3.2. Let G} be defined in (3.7) and V™ = o(G™™). Then

(i) (K — AHGW) = JgW), (3.8)
(ii) vy, - U, v =1, (g) [7) (3.9)

Corollary 3.3. The Toda lattice equation

an _ )
(b" )z a Jé(N

is equivalent to the discrete zero-curvature equation

Ut = VOIU, — UV,

4. The Bargmann-Garnier coordinates for the stationary Toda equaticn

Let cg = 1 and ¢q,...,cy be any given constants. Consider the stationary Toda (ST)
equation

X = JgW = XM 4o x W=D 4oy X @ = .1
Define £P = g1 and
gV = g 41 gU=Y 4o 4080 4 8510802

- 5 4.1a)
=59 484282,
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J=0,1,2,.... Then (3.7) is decomposed into

GM 0., §) =GV, E) +5(0g™? (4.2)
with

S =8N+ 5AN T 1 Sy, (4.2a)

Since Kg? = Jg©? = 0, we have freedom in the choice of {§;}. According to
theorem 3.2, (4.1) has two equivalent forms:

6] (K —A)GW =0 (4.3)
(ii) v, -u. v =0, (4.4)

Proposition 4.1I. The discrete flow defined by (4.1) has three conserved quantities
(independent of n € Z), expressed in terms of G = (a,, )7

@) det VIV = 202 _ B, 18s — [38a0tn — Gpoi1@nmr} + (B — 1) Ba]? (4.5)
(11) G(N) . TG(N) = %an—lanan—lan + (bn - l)an—laﬂ—lﬁn + 243_:1611—1)3:: (46)
(iii) D™ = SG™ = 1(@nttn + p-10n1) + (Ba — M) @7

with the relations

det V¥V — 26W . G = [ p7? (4.8)

GM.T6W — g, 10, | DV = 1a2_ (4Bu_1fn —al_)). (4.9)
Progf. We have

V(NJ U, V(N)U—l
by (4.4). Hence, (4.5) is independent of rn and (4.6) and (4.7) are conserved integrals of
(4.3) according to the total difference formulae (2.9) and (2.10). Direct calculations yield
(4.8) and (4.9). a
Lemma 4.2, det V@ is independent of 5(A} and

det VW = (A — A1) - (A — Aaws2). 4.10)

Proof. Because the components of GV (3, £) are

o = 8y + a7 1800 = (20 + Soay AN 4
ﬁn=En=lN+---

by (4.2), we see that a, 8 in (4.5) can be replaced by &, § and the highest term in (4.5) is
—- A_?.N-!—?._ O
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Consider the generic case: there exist N distinct elements among A, ..., Aanyz.
Without loss of generality, let them be Ay,..., Ay. Define

N
POY= (=) A=Ay =yl @.11)
=0

Lemma4.3. Let D™ = S[G™M(x, £)]. Then

i) DW= BN 4 5(3) 4.12)
(ii) DM = ¥ oV 4oy + S ECD, (4.13)
Proof.

D™ = SIGW + g=25(0)] = SIGM] + S[gC215(0) = DV +53)

N
D = (s, — A-SO)ZE(J_I)AN_J;
i=0
o~ N_l - . - . T
= SIEXD + 3 ($EUTD — SEDNT — SpEDAN!
j=0
which gives (4.13) since Spg™D =1 and
SEU-D _ S = 50D 4 ¢,g0P + . 5T
— So(e + 1800 £ oo 4 08 gi118D)

-1
= —¢j41808" = —¢j1

where (2.14) is used.
Now a crucial expression is to establish D™ by fully using the freedom of choice of
8(\). Let

N
y=c=lh=c+) A (4.14)
k=1
Then
A+ PRy =2 el o

By (4.13), D™} 4 (A 4+ y) P() is a polynomial with degree not greater than N — 1, and
will be taken as —3(*). Hence,

D™ =DM 4L 500 = —(A + ¥)PR)
and
26M . TG™ = det vV + { DM
= P =0 — Ang1) - (O — hawg2) + (1) PO
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A direct calculation gives
G[N) . TGfN) = —JZAZN 4
Therefore,

G® . TG = _5,P(MR()
=—8h—A1} - A —A)A— ) (A — gy 0O

Proposition 4.4. 'The conserved integrals of (4.1) are polynomials of A along the discrete
flows

det VM = —Q(0P(L) (4.15)
GW . TG™M = 5 R(MDP(N) (4.16)
D™ =856 = (A + )P @417

with 2 common factor P(A) and the relation

Q) = A+ ¥)2P(A) + 28R (A). (4.18)

4.1. Construction of the canonical coordinates

Decompose G and introduce {I")} by the ‘interpolation formula’

N
GO, E) = ECDPQY + Y £V

i=1

(4.19)
— 5(_1)P@-) + i _’ﬂpw
~ Ty
i=t 7
where U1 = U-D — ;-1 which determines a linear automorphism
EQ, . LEWDy e, T
with
GM(g, £) = PP )r® k=1,....N (4.20a)
N
5 o2 2a, + 8ya7!
rUt = @ — " n 4,
yro=go- (1 20
By (4.3), with A = A,
(K — 2 T® =p k=1,....N. (4.21)

The left-hand side of (4.9) has a common factor P(A) by theorem 4.4. Therefore, by putting
A = A, we have

0= 4fn1fn — ity =45, T3, ~ Tio,)
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which implies
l-UC) 2\”‘”‘.&0})
ré& = ( ‘;;t) = ( m n+1) (4.22)
r® W
by introducing

¥® =1 (4.23)

Theorem 4.5. ™ defined by (4.23) satisfies the Toda eigenvalue problem with constraint
conditions

(L= 0™ = a0, + G — 2 VP + gy P =0 (4.240)
2a, +&at\ 2y, Wap1)
( byt y ) = ( (W, ) (42467
where W, = (¢, ..., {7, (n, 1) = B W O,

Proof. At h =),
0=DW = P'GyPUL - 1)y ®).
Introduce the Bargmann—Garnier coordinates
Gn = Vn Pr = @p1¥n—1- (4.25)

Then (4.24) implies

(‘;) - fpg) = (i\/w,q) +7(9.9) = (g, 92 ~ (p.q) - 562) 426
g.9)~v

where A = diag{\y, ..., Ax). The Toda eigenvalue problem (4.24a} is nonlinearized to be

(Pn+l) = F (Pn) (427)
Gn+1 an

AP AN agq
H'(‘I)_) (4) _(a“(Aq+yq-(q,q)q—p)) 4-28)

is a symplectic map, since, by direct calculations,

where

dp' A dg’ =dp A dg. 0O

‘Thus we have the following theorem.
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Theorem 4.6. In the generic case, given the constants ¢y,...,<,, each solution of the
stationary Toda equation (4.1) can be represented as

(Z:) = f{Pn\Gn) (4.29)

where (py, g.) is a discrete orbit of the symplectic map H

PnY _ gnf PO
(q,,) —H (qo) (4.:30)

starting from Some initial point {pg, go)-

Theorem 4.7. Given distinct A, ..., Ay, every discrete orbit (py, g.)7 of the symplectic
map H is mapped by f into the solution of the stationary Toda equation (4.1) with some
constant coefficients ¢1, ..., cn.

Proof. The direct verification is more easy.
Denote the space of orbits generated by H by N(A1, ..., An), and the solution variety
of (4.1) by M{cy, ..., cy). Consider the union

NN=UN(A11'--5A-N)
with (A1, ..., Ax) running over all points of C¥ with distinct Ay, ..., An, and
MN=UM(CL,---,CN)

with {c], ..., ¢y} running over all generic cases. Then the facts obtained in this section
mean that

FiNy = My

is an onto mapping. Therefore, the stationary Toda equation (4.1) is equivalent to the
symplectic map H in (4.28) in the above sense,

5. Integrability of the symplectic map H

The conserved integrais of H are given in Proposition 4.1 and 4.4. To show the involutivity
of the integrals they should be written in terms of the canonical coordinates (p, g). First
we have

G0, E) _ (o)+ N zwﬁf’wﬁi’l) _ (zgm.ww)) 5.1
P 17—\ P L4 O (U, U) '

where

0.1, 8) = ({(x — )71, )
N e o0 (5.1a)
_ ' _Zl 5
=2 may g e

j=1
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Define the generating function of the conserved integrals

-1
= 2P2())
= —Qpe10n @0 (Wny, W) Q0 (Wy, Wpii)

— (by — AYan—y Qa(Wa—1, W1 + @a(Wr, Wi}l

Fa G"M.rG"

—al_ [[1+ Oy(Wpot, Yot M1 + Oa (¥, W)

which is reduced to

Folpr @) = Oa(Ap ) + ¥ 0u(p. 2) — (7, )01 (0. @) — Oa(p. ) + %[1 + 0:(0 )]

e ) Ou(pq)
Q.(g,p) Qilg.q) (52)

due to (4.24). According to (4.16), we have

BRA) _ &S —p) A —pw)

Pl D = 50y = S0 =) (5.3)
along the discrete orbits of H. A direct calculation shows the involutivity
{Fa. Ful =0 Vi, puecC (54)

where {-, -} stands for the Poisson bracket in (R*", dp A dg). The Laurent expansion

& Fi(p.q)
e (55)

&
Falp,q) = '5; +
=0

yvields (s =1,2,...)
5
Fo={Ap,q)+v(p.a)— (p.a)lg.4) — (p. p} + Ez(q, )

F]
Fy=(0"p, )+ y{A'p,q) — (P, g){A°q, @) — {A°p. p) + qu, q)

F Y {(AMp,p) (Alp,g) (5.6)

o Ak Pl (Mg |

Theorem 5.1. The symplectic map H defined by (4.28) is completely integrable with the
involutive system of conserved integrals {F;} given by (5.6)

(F,Fi}=0  Vj,k=012 ... 5.7
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6. The finite-band solution of the Toda lattice equation

It is desirable to find the direct relationship between the integrable symplectic map H and
the soliton hierarchy, or more specifically, the relations between {F,}, {X'} and {V¥).

Theorem 6.1. (i) The differential of the map f maps the Hamiltonian vector field IV F;

on Ny into the soliton vector field X* on My up to a linear combination

f*: IVF, - X(.r) +elX(’"’1) NS e,Xm) = Jn(s)

where the gradient n is defined by (6.3).

(6.1)

(ii) I'VF, is the result of nonlinearization of the time part V®y of the Lax pair:

_(—9F/3q9 _ P
IV, E =( 3F:j8pU) = V&R, ) o

VOQ, ) = oGO, ).

where

Proof. Let (py, gn)7 be an orbit of H and let ¥, = g,. Define

_ 0 -
i n=(1)=g{ 1

AWy, W)

(s>_z;vru> (ZM En. r=+1}) s=0,1,....

=1
which satisfy the Lenard recursive equations (2.5). Thus,

79 =89 +erg" 4+ g + 20
and

In®W =X 4 X604 4 g X@,
Let y = (p, ¢)T. Consider the differential of f:

AT =S| fpren

e=0

de
(M{Z Ag,§)+2y{g.9) —4lg.9Mg.¢) -
2g.4)

and the Hamiltonian vector field of F,

Py _ _ {—3F:/%g
(q) =IVE = ( 3F,/dp )

A direct and tedious calculation gives

5 (q” ) UVF]=Jg®

and (6.2).

(6.2)

(6.3)

) — g, p)})
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Theorem 6.2. Let yo(ts) = (po(ts). qolt: )T be a solution of the initial-value problem:

(- (L)
ot \ ¢ 4/ =0 qo

Yakts) = H" (yo(t:)). (6.5)

and

Then (@, (t,), Ba(t:))T = F(¥a(t)) solves the Toda lattice equation

4 (a" = I = X9 4y X670 4 g X0 (6.6)
dtg bﬂ

Proof. According to (6.2) and theorem 4.6, (6.4) and (6.5) can be put in the form

= Vn(”)"rz Ins1 = UpYp-

a; n
Therefore,
d e \[ 9 (a )
OFEUH_(VHHU”_UHV")_U*(IM)[a_ts-(bn -Jn .
By (3.4), U, is a one-to-one linear map, hence (6.6) is satisfied. .

Consider the special case s = 0. Let (po(?), go(t))T be the sclution of the initial-value
problem:

4 (P) VR = (—Ap—w+ (q-q)p+2(p.q)q—5zq)
dr \ g Ag+vg—{g.9)g—2p

(5) .= ()

Then the algorithm

po()\ B { pa() Y J [ an(2)
(@m)*(%m)*(mm)

yields a solution to the Toda lattice equation

E_ (an) = x0 - (an(bn-f-] - bn)) )
de \ b z(a,z; - a,zl_l)

The discrete evolution behaviour of the pumerical solution is shown in figure 1, where

N =2 and
1 0 1 _ (2 _ _
(00 me(l) w=(l) e aeo
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7. The discrete Neumann system

N + 1 distinct eigenparameters are taken instead of N in the Bargmann—Garnier case. Let
A =diag(Ay, ..., Ay41), Br = (PP, ..., @V +V). Consider the Neumann system [9}:

At Pumy + by Py 4+ 0, Ppy = AP,
azl -y _ o 2{®p, Dps1)
()= =2 "= Cenen )

By introducing pr = @3- 1Pn-1, g = P, the Neumann system is equivalent to the
symplectic map

| Pn Pl } _ @ndn
& (qﬂ) ” (‘fn-i-l) - (an_l{(‘\- — by)an “‘Pn})
where
an Y _ - (A — Badgn — pall
(bn)—f(pﬂ!qn)_( {Aqlﬂg,q”}_l )'

The total-difference formula (2.9) provides a natural and systematic way of yielding the
conserved integrals of H. Let P(A) = (A — X;}--- (A — Ayy1) and

& erw 204(®y, Puts)
N il - APy, Py
C _ZA—A,-WJ_PQ)( (P, Dn) )

j=I
It is easy to see that
(K = MHGM =0.
Therefore, we obtain the generating function of the integrals for H:

__ v e Ci(p. p)  Qalp.q)
=ommt TOT =000 6000 oaa |

The Neumann representation, similar to theorem 4.6 and 4.7, can be established in the phase
space T'SY.
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