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Abstract. It is proved that every solution of the stationary Toda equation in the generic case 
is represented as a discrete orbit of the symplectic map obtained through nonlinearization of 
the Toda eigenvalue problem. As M application, the calculation of the hite-band solution of 
the Toda lattice equation is reduced to the solution of a system of ODES plus a simple itemtive 
process of the symplectic map. 

1. Introdudion 

Although the integrability of differential equations of motion was the ultimate goal in the 
early years of classical mechanics, there were then only a very few examples of integrable 
systems; including the famous Jacobi’s geodesics on an ellipsoid, Neumann’s constrained 
harmonic oscillator and the integrable cases of top due to Euler, Lagrange and Kovalevskaya. 
In recent years, quite a few new finitedimensional integrable systems have been discovered 
through various reduction techniques from soliton hierarchies (see [1-5]). Nevertheless, it 
was only in 1991 that the framework of the discrete version of classical integrable systems 
was found, which is expressed in the language of integrable symplectic maps (see [6,7]). 

The nonlinearization technique [1-3], or the restricted flow technique I4.51, which is 
similar, is proved to be a powerful tool for obtaining new finite-dimensional integrable 
systems from various soliton hierarchies. The aim of the present paper is to show that the 
technique is also effective, in the discrete case, of finding new integrable symplectic maps 
[6,7]. The Toda lattice hierarchy is studied in detail to illustrate the general principles. 
The symplectic maps in the BargmannGarnier and Neumann cases, with their conserved 
integrals, are obtained in [8,9]. Here a new understanding is given. It is shown that in the 
general case each solution of the stationary Toda equation is represented as a discrete orbit 
of the integrable symplectic map, which is obtained through nonlinearization of the Toda 
eigenvalue problem. To prove this difficult existence theorem, just as in the continuous 
case of the Heisenberg hierarchy [lo], the following tools are essential and have general 
significance: 

(i) the total difference formulae, which yield the explicit recursive formulae for the Toda 
gradients (gu)] and the conserved integrals of the symplectic map in a systematic way (see 
lemma 1.1); 
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(ii) the commutative formula, which gives the commutative representation of the Toda 
vector fields (see lemma 3.1); and 

(iii) the interpolation formula, which establishes the inner relationship of the Lenard 
equation and the Lenard eigenvalue problem; the former defines the soliton equations, 
while the latter determines the nonlinearized eigenvalue problems (see (4.19)). 

Direct relations between the integrals IFs) of the symplectic map, the Toda vector fields 
[X(')) and the time parts {Vn)) of the Law pair are revealed in section 6. 

As an application, the calculation of the finite-band solution of the Toda equation is 
decomposed into two steps: the solution of a Hamiltonian system of ODES plus an iterative 
process of the symplectic map. A numerical example shows the discrete evolution picture 
of the solutions. 

A P Fordy asked for an explanation of the integrability mechanism of the nonlinearized 
eigenvalue problem (NEP). It turns out that there exists some kind of equivalence between 
the integrability of the stationary soliton equations and the NEP. A rigorous treatment is 
made in this respect for the Heisenberg case as a continuous model [IO], while the present 
paper provides a discrete example. 

2. The Toda vector fields 

Let E be the shift operator: E f ( n )  = f ( n  + I ) ,  E - ' f ( n )  = f ( n  - I )  and A = E - I ,  
A- = 1 - E-!. Consider the Toda eigenvalue problem: 

L p  an-lpn-1 + bn& + a,h-,+i = W or Lp=(E- 'a+b+aE)r l ,=hJr .  

(2.1) 

It is well known that 

(K - AJ)VA 0 (2.3) 

where K, J are the Lenard pair ofoperators: 

J=(:* at). 
Consider the Lenard recursive equations: 

The former has two linearly independent solutions: 
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while the latter has special polynomial solutions: 

g(-2) has a special position, since Kg(-2) = Jg(-z) = 0, and plays a special role in the 
whole structure. The first few To& vector fields X(j) = J g u )  are 

The general solution of (2.5) is expressed as the linear combination 

+ c l g ( j - l )  + . . . + c j + l g ( - l )  + ~ , + ~ ~ ( - 2 ) ,  p) (2.8) 

Lemmn 1.1 (Total difference formula). For any functions a. B of discrete variables n E Z 

(2.10) 

Proof: By direct calculations, resorting to the discrete Leibnitz rule, f a g  + gA- f = 
A ( g E - ' f ) .  0 

Progosirion 1.2. The polynomial solution g?' = (gf;, gy;)T satisfies the explicit recursive 
formula 
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Proof. Put (gull on the carrier of the Laurent series 

which satisfies (K - A J ) g  = 0. Hence, we have two quantities independent of n E Z 

g . Tg = constant = 0 Sg = constant = -A 

and the required (2.13) is obtained by comparing the coefficients of the same power of A. 
0 

Remark 1.3. As by-products, we have 

Sag(-') = 1 S1g(J-') = Sogo) j = 0,1,2, .  . . , (2.14) 

3. The commutative representation 

By in!nducing pn = an-i@n-i, qn = pa, (2.1) is transformed into 

with 

The discrete zero-curvature equation 

~ n l = v " + I ~ n - ~ " v "  

is defined as the compatibility condition of the Lax pair 

Y"+l = U"Y" Ynr = KY". 

Let U = (a. b)' and 

A direct calculation gives the following lemma. 
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For arbitrary function G .  = (an, j3 ,JT.  of discrete Lamma 3.1 (Commutative formula). 
variables n E Z, 

where the zero trace V is defined as 

Consider a special choice of G :  

We have 

- - J p  = COX(N) + clx"') +. . . . +. cNx(o' 

Theorem 3.2. 

(0 

(ii) 

Corollary 3.3. The Toda lattice equation 

Let GCN) be defined in (3.7) and V@" = o(G"'). Then 

( K  - hJ)G(" = JC'". 

v ; p n  - U " V y  = U* (;;) [J,E("l 

is equivalent to the discrete zero-curvature equation 

U,, = v;;; U" - U. v p .  

4. The Bargmann-Garnier coordinates for the stationary Toda equation 

(4 .1~~)  
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j = 0, 1,2, . . .. Then (3.7) is decomposed into 

GCN)() . ,  6 )  = G'"(A,$) + S(A)g'-'' 

with 

6(h) = 62hN-' + &AN-' + ' ' ' + 8 N + l .  (4.20) 

According to Since Kg(-2)  = Jg(-*) = 0, we have freedom in the choice of {6j ] .  

theorem 3.2, (4.1) has two equivalent forms: 

(4.3) 

(4.4) 

Proposition 4.1. The discrete flow defined by (4.1) has three conserved quantities 
(independent of n E Z), expressed in terms of GiN) = (an, 

0) (4.5) I det V'" = 4a:-1j?n-~j?,, - [Tam@" - a,-i(Y,-l) + (b,, - A)BnI2 

(ii) G"' . TG( N )  - - I zan-ian@n-I% + (b. - A)an-i(Yn+'% + Za~-,j?.-~j?,, (4.6) 

(iii) 

with the relations 

D ( ~ )  = S G ( ~ )  = f(anm, + a n - p n - , )  + (b, - A &  (4.7) 

det V(N) - , T G ( N )  = -[D")]Z (4.8) 

(4.9) G C N ) .  T G C N )  - a m - i ~ n - i D ( N )  = &at1(4j?,-1j?. -a:-,). 

Proof. We have 

( N )  - v(N)u-i 
",,I - " n n 

by (4.4). Hence, (4.5) is independent of n and (4.6) and (4.7) are conserved integrals of 
(4.3) according to the total difference formulae (2.9) and (2.10). Direct calculations yield 
(4.8) and (4.9). 0 

Lemma 4.2. det V"' is independent of 6(h) and 

det V ( N )  = -(h - A t )  " ' ( A  - A?.ZN+Z). (4.10) 

Proof. Because the components of G(N)(A, 6) are 

an = Gn t a;'8(A) = (?a. + 62a;')AN-' + . . , 
= B" = A N  + ... 

by (4.2), we see that (Y, j? in (4.5) can be replaced by &, and the highest term in (4.5) is 
-AZN+Z, 0 
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Consider the generic case: there exist N distinct elements among A I ,  . . . , AZN+Z. 
Without loss of generality, let them be AI, . . . , A N .  Define 

&'(A) = (A - h i ) .  , , (A - A N )  = C ljbN-j. 

Lemma 4.3. Let E ( N )  = s[G(~')(A, e)] .  Then 

(9 D(" = + &(A) (4.12) 

(ii) (4.13) 

Proof. 

N 
(4.11) 

j=O 

- 
DW" = - ( A N + ]  + clAN +,. . + CNA)  +  SI$(^-'). 

D ( N )  = S[G"(" + g'")S(A)] = S[G"'"] + S[g(-')]8(A) = + & ( A )  
Y 

which gives (4.13) since SO&') = 1 and 

slg(j-l) - s o t  - ( j )  = sl @(I-1) + c,gU-Z) + , , , + c jg ( -U)  

- s o p  + clgo'- l )  + . . , + cjg(0) + c j + l g ( - l ) )  

= -cj+lsog'-l' = -cj+1 

where (2.14) is used. 

&(A). Let 
Now a crucial expression is to establish DcN) by fully using the freedom of choice of 

N 

y = c, -11 = c1 + CAk. (4.14) 
k=l  

Then 

(A + y ) P ( A )  AN'' + C I A N  + .. 
By (4.13), 
will be taken as -8(A). Hence, 

+ (A + y ) P ( A )  is a polynomial with degree not greater than N - 1, and 

D(") = +8(A)  = -(A + y )P(A)  

and 

2G(N)  . T G ( N )  = det V") + [D")]* 

= P(A)I-(A-IN+I)~~.(~-~ZN+Z)+(~+~)~P(~)I. 
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A direct calclllation gives 

G") , TG") = -&)?N + . . . , 

Therefore, 

G"). TG") = +P(A)R(A) 
= - 6 2 ( A - A , ) . . . ( A - h " ) ( A - 1 1 1 ) . . . ( h - l l ~ ) .  0 

Proposition 4.4. The conserved integrals of (4.1) are polynomials of A along the discrete 
flows 

4.1. Construction of the canonical coordinates 

Decompose GcN) and introduce (rb'] by the 'interpolation formula' 

N 

j=1 

G ( N ) ( A , ~ )  = @-Up(*) + C f ( j - l ) A N - i  

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

with 

By (4.3), with A = hk. 

( K - h k @ ) = o  k = i ,  .... N. (4.21) 

The left-hand side of (4.9) has a common factor P(A) by theorem 4.4. Therefore, by putting 
A = Ak we have 

0 = 4 p , - 1 p . - ~ ; ~ ~  =4r$-lr;;-(r;f;-,)2 
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which implies 

by introducing 

(4.22) 

(4.23) 

Theorem 4.5. 
conditions 

defined by (4.23) satisfies the Toda eigenvalue problem with constraint 

(4.24~) 

(4.24b) 

where Yn = (@A1), . . . , @iN))T, ( q ,  5 )  = XyqG)<"). 

Proof. At h = ht, 

0 = D") = P'(hk)@ik){(L - AK)@(~)] .  

Introduce the Bargmann-Gamier coordinates 

4" = h P. =an-1*n-1. (4.25) 

Then (4.24) implies 

(4.2G) 

where A = diag(h1,. . . , A N ) .  The Toda eigenvalue problem (4.24~) is nonlinearized to be 

(4.27) 

where 

is a symplectic map, since, by direct calculations, 

dp' A dq' = d p  A dq. 

Thus we have the following theorem. 
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Theorem 4.6. In the generic case, given the constants cl, . . . , c., each solution of the 
stationary Toda equation (4.1) can be represented as 

where ( p n ,  qn) is a discrete orbit of the symplectic map H 

(4.29) 

(4.30) 

starting from some initial point (PO, qo),  

Theorem 4.7. Given distinct A l . .  . . , A N ,  every discrete orbit ( p n ,  q.)T of the symplectic 
map H is mapped by f into the solution of the stationary Toda equation (4.1) with some 
constant coefficients c1, . . . , CN. 
Proof. 

of (4.1) by M(c1,. . . , CN). Consider the union 

The direct verification is more easy. 
Denote the space of orbits generated by H by N(A1,  ..., AN),  and the solution variety 

NN = U N ( h .  .. . , AN) 

with ( A l , ,  , , , AN) running over all points of C N  with distinct A I , .  . . , A,, and 

MN = u M ( c t , .  . , I C N )  

with (cl, . . . , CN) running over all generic cases. Then the facts obtained in this section 
mean that 

f:" + MN 

is an onto mapping. Therefore, the stationary Toda equation (4.1) is equivalent to the 
symplectic map H in (4.28) in the above sense. 

5. Integrability of the symplectic map H 

The conserved integrals of H are given in Proposition 4.1 and 4.4. To show the involutivity 
of the integrals they should be written in terms of the canonical coordinates ( p , q ) .  First 
we have 
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Define the generating function of the conserved integrals 

which is reduced to 

Q A ( P ,  P )  Q A ( P ,  4)  - I  QA(q, P )  Q A ( ~ .  4) 

due to (4.24). According to (4.16), we have 

(5.3) 

along the discrete orbits of H. A direct calculation shows the involutivity 

where [., .) stands for the Poisson bracket in (Rz", dp A dq). The Laurent expansion 

(5.5) 

Theorem 5.1. 
involutive system of conserved integrals [ F j }  given by (5.6) 

The symplectic map H defined by (4.28) is completely integrable with the 

{ F j ,  = 0 V j , k  =0, 1,2,. . . . (5.7) 
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6. The finitedband solution of the Toda lattice equation 

It is desirable to find the direct relationship between the integrable symplectic map H and 
the soliton hierarchy, or more specifically, the relations between (Fs], {X")] and {V("). 

Theorem 6.1. (i) The differential of the map f maps the Hamiltonian vector field ZVF, 
on NN into the soliton vector field X") on MN up to a linear combination 

f* : IVF,+ X(,~)+elX(S-')+...+e,X(a) =.iq(') (6.1) 

where the gradient q(*) is defined by (6.3). 
(ii) ZVF, is the result of nonlinearization of the time part V@)y of the Lax pair: 

where 

V'"(A, q) = o(G"'(k, q)). 

Proof. Let ( p n ,  qJT be an orbit of H and let Urn = q.. Define 

which satisfy the Lenard recursive equations (2.5). Thus, 

q(l) = g(s) + elg(.?-l) + . . . + eS+&') + &+Zg(-') 

Jq") = X ( S )  + e  IX ($-I) + . . . + 
and 

Let y = ( p ,  q)T.  Consider the differential of f: 

and the Hamiltonian vector field of FI 

A direct and tedious calculation gives 

and (6.2). 
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Theorem 6.2. Let yo&) = (p&), qo(ts))T be a solution of the initial-value problem: 

585 

ProoJ According to (6.2) and theorem 4.6, (6.4) and (6.5) can be put in the form 

d 
-yn = v:'yn Yn+I = UnYli. 
dts 

Therefore, 

By (3.4), U, is a one-to-one linear map, hence (6.6) is satisfied. 0 

Consider the special case s = 0. Let (PO(?), qO(t))T be the solution of the initial-value 
problem: 

Then the algorithm 

yields a solution to the Toda lattice equation 

The discrete evolution behaviour of the numerical solution is shown in figure 1, where 
N = 2 and 



Figure 1. l ime evolution of the finite-band solution (a.(t). b,(t)) of fhe Toda equalion, 
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7. The discrete Neumann system 

N + 1 distinct eigenparameters are taken instead of N in the Bargmann-Garnier case. Let 
A = diag(h1,. , . , h ~ + l ) ,  4n = (@;I), . . . , @AN+' ) ) .  Consider the Neumann system [91: 

By introducing pn = an-T%-I, qn = On, the Neumann system is equivalent to the 
symplectic map 

where 

The total-difference formula (2.9) provides a natural and systematic way of yielding the 
conserved integrals of H. Let P(h)  = (A - A I ) ,  . . (A - I N + I )  and 

It is easy to see that 

(K - hJ)G"' = 0. 

Therefore, we obtain the generating function of the integrals for H 

The Neumann representation, similar to theorem 4.6 and 4.7, can be established in the phase 
space T S N .  
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